Estimating Products

When you are working with fractions and mixed numbers, you can estimate using rounding, compatible numbers, or compatible benchmark fractions.
Estimate $\frac{3}{10} \times 21$ using a whole number Estimate $\frac{3}{10} \times 12$ using a compatible that is compatible with the denominator. benchmark fraction.

$\frac{3}{10} \times 21$ \downarrow	Change 21 to the nearest whole number that is	$\frac{3}{10} \times 12$ \downarrow	Round $\frac{3}{10}$ to a compatible benchmark fraction. Since $\frac{3}{10}$
$\frac{3}{10} \times 20=6$	compatible with 10.	$\frac{1}{4} \times 12=3$	is close to $\frac{1}{4}$ and 4 is a factor of twelve, use $\frac{1}{4}$.
$\frac{3}{10} \times 21 \approx 6$	ink: $20 \div 10=2$.	$\frac{3}{10} \times 12 \approx 3$	Think: $12 \div 4=3$.
	$3 \times 2=6$.		$1 \times 3=3$.

Estimate each product by using compatible numbers or benchmark fractions.

1. $\frac{1}{5} \times 20=$
2. $31 \times \frac{3}{5}=$ \qquad
3. $\frac{4}{7} \times 12=$ \qquad 3. $\frac{5}{8} \times 20=$ \qquad
4. $\frac{7}{12} \times 27=$ \qquad 6. $\frac{9}{16} \times 70=$ \qquad
5. $31 \times \frac{2}{7}=$ \qquad 8. $24 \times \frac{5}{12}=$ \qquad
\qquad

Estimate each product by rounding each factor to the nearest whole number.
10. $10 \frac{2}{3} \times 3 \frac{1}{8} \rightarrow$ Round $10 \frac{2}{3}$: \qquad Round $3 \frac{1}{8}$: \qquad Multiply: \qquad
11. $9 \frac{2}{9} \times 3 \frac{5}{6}=$ \qquad 12. $5 \frac{7}{8} \times 6 \frac{3}{4}=$ \qquad 13. $2 \frac{1}{5} \times 6 \frac{4}{10}=$ \qquad
14. Josh used $\frac{3}{7} \times 21$ as a compatible number estimate for $\frac{3}{7} \times 20$. Is his estimate reasonable? Why or why not?
15. Which estimate for $\frac{7}{12} \times 20$ is better than the other?

$$
\frac{7}{12} \times 20 \approx \frac{7}{12} \times 24=14 \quad \frac{7}{12} \times 20 \approx \frac{1}{2} \times 20=10 .
$$

Estimating Products

Estimate each product.

1. $2 \frac{3}{8} \times \frac{1}{3}$ \qquad 2. $6 \times 2 \frac{1}{5}$
2. $\frac{6}{10} \times 5 \frac{3}{4}$
3. $2 \frac{1}{2} \times 2 \frac{1}{3}$ \qquad 6. $\frac{7}{8} \times 4 \frac{3}{8}$
4. $3 \frac{7}{9} \times 6 \frac{2}{5}$ \qquad
5. $\frac{3}{5} \times 51$
6. $\frac{1}{4} \times 17$ \qquad
7. $27 \times \frac{3}{8}$ \qquad
8. $\frac{12}{15} \times 8$ \qquad 12. $17 \times \frac{1}{2}$
9. $8 \frac{4}{9} \times 3 \frac{6}{7}$ \qquad
10. $7 \frac{5}{8} \times 2 \frac{2}{3}$ \qquad 15. $\frac{5}{12} \times 12$
11. $\frac{1}{3} \times 2 \frac{4}{10}$
\qquad
12. Show three ways to estimate $\frac{3}{5} \times 9 \frac{1}{2}$. Identify each method you use.
13. Jenna lives $4 \frac{3}{10}$ miles from school. She estimates that she travels $4 \times 2 \times 5$, or 40 miles each week. Is her estimate an overestimate or an underestimate? Explain.
\qquad
\qquad
14. Which benchmark fraction could you use to estimate the product of $36 \times \frac{11}{16}$? \qquad
15. Estimation Which is the best estimate for the area of a square with sides equal to $4 \frac{1}{8}$ inches?

A 6 sq in.
B 12 sq in .
C 16 sq in .
D 20 sq in .

20. Bryce has 24 baseball trophies. Matt has $\frac{3}{4}$ as many trophies as Bryce. How many trophies does Matt have?

A 6 trophies
B 12 trophies
C 18 trophies
D 24 trophies

