Fractions and Division

You can think of fractions as division: The numerator is the same as the dividend and the denominator is the same as the divisor.

Write $\frac{5}{8}$ as a division expression.
Think: $\frac{1}{8}$ of 5 wholes.

Shortcut: The numerator is 5 , so the dividend is 5 . The denominator is 8 , so the divisor is 8 .

So $\frac{5}{8}=5 \div 8$.

Write $3 \div 8$ as a fraction.
Think: 3 wholes divided into 8 equal parts. Each part is equal to $\frac{3}{8}$.

Shortcut: The dividend is 3 , so the numerator is 3 . The divisor is 8 , so the denominator is 8 .

So $3 \div 8=\frac{3}{8}$.

Write a division expression for each fraction.

1. $\frac{2}{3}$

2. $\frac{3}{7}$ \qquad 3. $\frac{7}{13}$
3. $\frac{7}{10}$
4. $\frac{5}{8}$
5. $\frac{3}{19}$
6. $\frac{13}{17}$

Write each division expression as a fraction.
8. $3 \div 8$
9. $3 \div 14$
10. $7 \div 9$
11. $4 \div 5$
12. $9 \div 10$
13. $13 \div 16$ \qquad
14. Explain how to write thirteen divided by thirty-three as a division expression and as a fraction.
\qquad
\qquad
\qquad
\qquad

Fractions and Division

Write a division expression for each fraction.

1. $\frac{2}{9}$ \qquad 2. $\frac{1}{7}$
2. $\frac{7}{10}$
3. $\frac{3}{4}$
4. $\frac{7}{8}$
5. $\frac{3}{16}$
6. $\frac{6}{13}$
7. $\frac{18}{23}$
8. $\frac{11}{12}$
\qquad

Write each division expression as a fraction.
10. $3 \div 8$ \qquad 11. $3 \div 16$
12. $6 \div 11$
13. $2 \div 7$ \qquad 14. $4 \div 10$
15. $5 \div 17$
16. $4 \div 9$ \qquad 17. $13 \div 23$
18. $17 \div 100$
19. Which term is any number that can be shown as the quotient of two integers?
A Rational number
B Prime number
C Decimal number
D Compatible number
20. Steve wanted to equally divide two sticks of butter among three bowls. Which fraction represents the amount of butter in each bowl?
A $\frac{5}{2}$
B $\frac{2}{3}$
C $\frac{3}{2}$
D $\frac{3}{6}$
21. Can the division expression $4 \div 15$ be shown as a fraction?

If yes, write the fraction. Explain why or why not.
\qquad
\qquad

