Name

Reteaching

Estimating Sums and Differences of Mixed Numbers

You can use rounding to estimate sums and differences of fractions and mixed numbers.

How to round fractions:

If the fractional part is greater than or equal to $\frac{1}{2}$, round up to the next whole number.

Example: Round $3\frac{5}{7}$ to the nearest whole number.

 $\frac{5}{7}$ is greater than $\frac{1}{2}$, so $3\frac{5}{7}$ rounds up to 4.

If the fractional part is less than $\frac{1}{2}$, drop the fraction and use the whole number you already have.

Example: Round $6\frac{1}{3}$ to the nearest whole number.

 $\frac{1}{3}$ is less than $\frac{1}{2}$, so drop $\frac{1}{3}$ and round down to 6.

How to estimate sums and differences of fractions and mixed numbers:

Round both numbers to the nearest whole number. Then add or subtract.

Example: Estimate $4\frac{1}{8} + 7\frac{2}{3}$. $4\frac{1}{8}$ rounds down to 4. $7\frac{2}{3}$ rounds up to 8. 4 + 8 = 12So, $4\frac{1}{8} + 7\frac{2}{3}$ is about 12.

Round to the nearest whole number.

1.	856	2. 13 ⁸ / ₉	3. 43	3 ¹ / ₃
4.	740	5. 29 ⁴ / ₅	6. 8	8 <u>4</u>
7.	19 <u>3</u> 4	8. 63 ⁴¹ / ₄₉		
Esti	mate each sum or differe	ence.		
9.	$7\frac{1}{9} + 8\frac{2}{5}$	10.	$14\frac{5}{8} - 3\frac{7}{10}$	
11.	$2\frac{1}{4} + 5\frac{1}{2} + 10\frac{3}{4}$	12.	$11\frac{3}{5} - 4\frac{1}{12}$	
13.	$9 + 3\frac{11}{14} + 5\frac{1}{9}$	14.	15 <u>6</u> – 12 <u>2</u>	
		R 10-2	Copyright © Pearson	n Education, Inc., or its affiliates. All Rights Reserved. 5

Name ____

Practice

10-2

Estimating Sums and Differences of Mixed Numbers

Round to the nearest whole number.

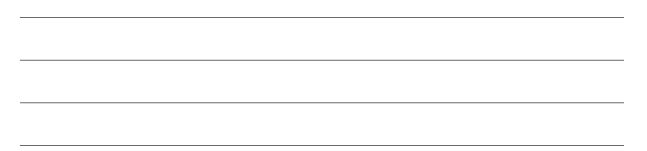
1. $3\frac{3}{8}$ **2.** $6\frac{5}{11}$ **3.** $1\frac{11}{20}$ **4.** $12\frac{6}{13}$

Estimate each sum or difference.

- **5.** $3\frac{1}{4} + 2\frac{5}{6}$
- **7.** $5\frac{5}{13} + 8\frac{3}{5}$

Robert and May are competing in a track meet. The table at the right shows the results of their events.

9. Robert says his better jump was about 1 ft longer than May's better jump. Is he correct?


8.
$$11 - 6\frac{3}{7} + 2\frac{2}{5}$$

Participant	Event	Results/Distance		
Dahart	Long jump	1. $6\frac{5}{12}$ ft 2. $5\frac{2}{3}$ ft		
Robert	Softball throw	62 <u>1</u> ft		
Maria	Long jump	1. $4\frac{2}{3}$ ft 2. $4\frac{3}{4}$ ft		
May	Softball throw	71 7 /8 ft		

10. Use the table above. If the school record for the softball throw is 78 ft, about how much farther must Robert throw the ball to match the record?

	Α	15 ft	В	16 ft	C 18	8 ft	D	20 ft
--	---	-------	---	-------	-------------	------	---	-------

11. Consider the sum of $\frac{3}{5} + \frac{3}{4}$. Round each fraction and estimate the sum. Add the two fractions using a common denominator and then round the result. Which estimate is closer to the actual answer?

